CROSSTAB Example \#4

SUDAAN Statements and Results Illustrated

- TEST
- PRINT STEST option
- SUBPOPX
- SETENV
- RFORMAT

Input Data Set(s): NHANES3S3.SAS7bdat

Example

Among adults with arthritis, estimate the type of arthritis, by gender, using NHANES III.

Solution

The data set is adults aged 17 and older from NHANES III. All variables in this example are from the home interview component of NHANES III, and all six years of data are analyzed. Thus, the sample weight variable is WTPFQX6, and the stratification and PSU variables are SDPSTRA6 and SDPPSU6, respectively. The SAS-Callable code for this example is presented in Exhibit 1.

The SUBPOPX statement is used to subset the data set to adults with arthritis, because these are the only subjects who were asked the question about type of arthritis (HAC1B). In addition to the two types (osteoarthritis and rheumatoid arthritis), several subjects replied that they did not know what type of arthritis they had. These subjects are included in the analysis since there are too many of them to exclude.

The TABLES statement requests a cross-tabulation of type of arthritis (row variable) by gender (column variable); hence, column percent is requested. The TEST statement will produce a Pearson-type hypothesis test of general association between arthritis type and gender. All test statistics are requested for the CHISQ hypothesis of general association (the CHISQ hypothesis test statistics are in the STEST output group).

The SETENV statement manipulates the printout so that all columns of the table can fit on a single page. The PRINT statement tailors the output to get specific statistics in a particular format.

This example was run in SAS-Callable SUDAAN, and the SAS program and *.LST files are provided.

Exhibit 1. SAS-Callable SUDAAN Code

```
libname in v604 "c:\10winbetatest\examplemanual\crosstab";
options pagesize=70 linesize=80;
proc format;
    value sex 1="1=Male"
                2="2=Female";
    value type 1="1=Rheumatoid"
                2="2=Osteo"
                3="3=Don't Know";
PROC CROSSTAB DATA=in.HANES3S3 FILETYPE=SAS DESIGN=WR DEFT1;
    NEST SDPSTRA6 SDPPSU6;
    WEIGHT WTPFQX6;
    SUBPOPX HAC1A=1 / NAME="TOLD BY MD HAVE ARTHRITIS";
    CLASS HSSEX HAC1B;
    TABLES HAC1B*HSSEX; /* HAC1B IS TYPE ARTHRITIS */
    TEST CHISQ / all;
    SETENV ROWWIDTH=15 COLWIDTH=10 LABWIDTH=27;
    PRINT NSUM="SAMSIZE" WSUM="POPSIZE" COLPER SECOL DEFFCOL="DEFF1COL" /
                STEST=default NSUMFMT=F9.0 WSUMFMT=F9.0 STESTVALFMT=F10.2 SPVALFMT=F8.4
            SDFFMT=F8.0 SADJDFFMT=F8.0;
    rformat hssex sex.;
    rformat haclb type.;
    RTITLE "TYPE OF ARTHRITIS, BY SEX, AMONG THOSE WITH ARTHRITIS";
    RFOOTNOTE "NHANES-III, 1988-1994, JULY 1997 DATA RELEASE, ADULTS (17+)";
```


Exhibit 2. First Page of SUDAAN Output (SAS *.LST File)

```S U D A A N Software for the Statistical Analysis of Correlated Data Copyright Research Triangle Institute December 2011 Release 11.0 DESIGN SUMMARY: Variances will be computed using the Taylor Linearization Method, Assuming a With Replacement (WR) Design Sample Weight: WTPFQX6 Stratification Variables(s): SDPSTRA6 Primary Sampling Unit: SDPPSU6```
Number of observations read $:$ 20050 Weighted count : 187647206   Observations in subpopulation $:$ 4298    Denominator degrees of freedom Weighted count : 32666641

The SUBPOPX statement restricts the analysis to adults who were told by a doctor that they had arthritis. SUDAAN identified 4,298 sample adults in the subpopulation (Exhibit 2), and they represent an estimated $32,666,641$ adults in the population with arthritis.
Next, SUDAAN displays the frequencies of the CLASS variables (Exhibit 3).

## Exhibit 3. CLASS Variable Frequencies

```
Frequencies and Values for CLASS Variables
by: Sex.

Sex Frequency Value
Ordered
 Position:
 1 1570 1=Male
Ordered
 Position:
 2 2728 2=Female
```


## Exhibit 3. CLASS Variable Frequencies-cont.

```
Frequencies and Values for CLASS Variables
by: Type arthritis:rheumatoid,osteoarthritis.
--
Type Arthritis:
 rheumatoid
 osteoarthritis Frequency Value
--
Ordered
 Position:
 1 840 1=Rheumatoid
Ordered
 Position:
 2 825 2=Osteo
Ordered
 Position:
 3 2574 3=Don't Know
```

SUDAAN then displays the results from the PRINT statement (Exhibit 4):

## Exhibit 4. HAC1B*HSSEX Crosstabulation



Among adults with arthritis, an estimated $56 \%$ do not know what type of arthritis they have; while $20 \%$ identify rheumatoid arthritis and $24 \%$ identify osteoarthritis (Exhibit 4). Note that the three percentages on the Total row add to $100 \%$, as do the three percentages on each of the Male and Female rows.

The gender-specific estimated percentages for "don't know" are $61 \%$ for males and $53 \%$ for females.
The comparison sampling plan for the requested DEFT1 is a simple random sample of 4,239 adults from all adults with arthritis. The design effects are not as large here as when estimating the prevalence of arthritis for the entire population and using DEFT1 (see Example 5), most likely because the subpopulation analysis here has a smaller average number of elements per PSU (cluster).

## Exhibit 5. Stratum-Specific Tests of Hypotheses for HAC1B*HSSEX

```
Variance Estimation Method: Taylor Series (WR)
For Subpopulation: TOLD BY MD HAVE ARTHRITIS
TYPE OF ARTHRITIS, BY SEX, AMONG THOSE WITH ARTHRITIS
 Test Statistics for Stratum-Specific Hypotheses
 Variable HAC1B by Variable HSSEX
```



```
NHANES-III, 1988-1994, JULY }1997\mathrm{ DATA RELEASE, ADULTS (17+)
```

The 5 test statistics ( Exhibit 5) used to evaluate the CHISQ hypothesis of no association indicates that males and females with arthritis differ significantly on the type of arthritis reported. The difference seems to be that females are less likely to say "don't know."

